64 research outputs found

    Characterization of fungus-specific human T helper cell responses

    Get PDF
    Invasive fungal infections are a major cause of infection related mortality in immunocompromised patients. Furthermore, inappropriate immune responses to fungal pathogens are associated with disease exacerbations in particular in patients with allergies or compromised lung functions, such as asthma or cystic fibrosis. Antigen-specific CD4+ T cells have been suggested to play a major role in anti-fungal immune responses. However, the exact quantification and detailed characterization of fungus-specific CD4+ T cells in humans has been hampered so far by the lack of appropriate methods for their identification. To overcome this technology gap, a flow-cytometric method was developed that allows for the first time the direct ex vivo detection and comprehensive characterization of the entire fungus-reactive CD4+ T cell compartment from human peripheral blood, i.e. conventional memory and naive CD4+ T cells (Tcon), as well as regulatory T cells (Treg). Based on the magnetic pre-enrichment of fungal antigen stimulated CD154+ Tcon and CD137+ Treg, fungus-reactive CD4+ T cells can be analyzed from large starting cell numbers, which allows the collection of sufficient numbers of target cells for subsequent phenotypic and functional analyses with high statistical precision. This technology was used to perform a detailed characterization of the CD4+ T cell response against two of the major fungal pathogens in humans, the constantly inhaled airborne fungus Aspergillus fumigatus and the gut- and skin-residing commensal Candida albicans

    Substrate discrimination by ergothioneine transporter SLC22A4 and carnitine transporter SLC22A5: Gain-of-function by interchange of selected amino acids

    Get PDF
    AbstractETT (originally designated as OCTN1; human gene symbol SLC22A4) and CTT (OCTN2; SLC22A5) are highly specific transporters of ergothioneine and carnitine, respectively. Despite a high degree of sequence homology, both carriers discriminate precisely between substrates: ETT does not transport carnitine, and CTT does not transport ergothioneine. Our aim was to turn ETT into a transporter for carnitine and CTT into a transporter for ergothioneine by a limited number of point mutations. From a multiple alignment of several mammalian amino acid sequences, those positions were selected for conversion that were momentously different between ETT and CTT from human but conserved among all orthologues. Mutants were expressed in 293 cells and assayed for transport of ergothioneine and carnitine. Several ETT mutants clearly catalyzed transport of carnitine, up to 35% relative to wild-type CTT. Amazingly, complementary substitutions in CTT did not provoke transport activity for ergothioneine. In similar contrast, carnitine transport by CTT mutants was abolished by very few substitutions, whereas ergothioneine transport by ETT mutants was maintained even with the construct most active in carnitine transport. To explain these results, we propose that ETT and CTT use dissimilar pathways for conformational change, in addition to incongruent substrate binding sites. In other words, carnitine is excluded from ETT by binding, and ergothioneine is excluded from CTT by turnover movement. Our data indicate amino acids critical for substrate discrimination not only in transmembrane segments 5, 7, 8, and 10, but also in segments 9 and 12 which were hitherto considered as unimportant

    Decreased inflammatory cytokine production of antigen-specific CD4+ T cells in NMDA receptor encephalitis

    Get PDF
    Anti-N-methyl-D-aspartate-receptor (NMDAR) encephalitis is the most common autoimmune encephalitis with psychosis, amnesia, seizures and dyskinesias. The disease is mediated by pathogenic autoantibodies against the NR1 subunit that disrupt NMDAR function. Antibody infusion into mouse brains can recapitulate encephalitis symptoms, while active immunization resulted also in strong T cell infiltration into the hippocampus. However, whether T cells react against NMDAR and their specific contribution to disease development are poorly understood. Here we characterized the ex vivo frequency and phenotype of circulating CD4(+) T helper (T-H) cells reactive to NR1 protein using antigen-reactive T cell enrichment (ARTE) in 24 patients with NMDAR encephalitis, 13 patients with LGI1 encephalitis and 51 matched controls. Unexpectedly, patients with NMDAR encephalitis had lower frequencies of CD154-expressing NR1-reactive T-H cells than healthy controls and produced significantly less inflammatory cytokines. No difference was seen in T cells reactive to the synaptic target LGI1 (Leucine-rich glioma-inactivated 1), ubiquitous Candida antigens or neoantigens, suggesting that the findings are disease-specific and not related to therapeutic immunosuppression. Also, patients with LGI1 encephalitis showed unaltered numbers of LGI1 antigen-reactive T cells. The data reveal disease-specific functional alterations of circulating NMDAR-reactive T-H cells in patients with NMDAR encephalitis and challenge the idea that increased pro-inflammatory NMDAR-reactive T cells contribute to disease pathogenesis

    Immunopeptidomics toolkit library (IPTK): a python-based modular toolbox for analyzing immunopeptidomics data

    Get PDF
    Background The human leukocyte antigen (HLA) proteins play a fundamental role in the adaptive immune system as they present peptides to T cells. Mass-spectrometry-based immunopeptidomics is a promising and powerful tool for characterizing the immunopeptidomic landscape of HLA proteins, that is the peptides presented on HLA proteins. Despite the growing interest in the technology, and the recent rise of immunopeptidomics-specific identification pipelines, there is still a gap in data-analysis and software tools that are specialized in analyzing and visualizing immunopeptidomics data. Results We present the IPTK library which is an open-source Python-based library for analyzing, visualizing, comparing, and integrating different omics layers with the identified peptides for an in-depth characterization of the immunopeptidome. Using different datasets, we illustrate the ability of the library to enrich the result of the identified peptidomes. Also, we demonstrate the utility of the library in developing other software and tools by developing an easy-to-use dashboard that can be used for the interactive analysis of the results. Conclusion IPTK provides a modular and extendable framework for analyzing and integrating immunopeptidomes with different omics layers. The library is deployed into PyPI at https://pypi.org/project/IPTKL/ and into Bioconda at https://anaconda.org/bioconda/iptkl , while the source code of the library and the dashboard, along with the online tutorials are available at https://github.com/ikmb/iptoolkit

    The Probiotic Compound VSL#3 Modulates Mucosal, Peripheral, and Systemic Immunity Following Murine Broad-Spectrum Antibiotic Treatment

    Get PDF
    There is compelling evidence linking the commensal intestinal microbiota with host health and, in turn, antibiotic induced perturbations of microbiota composition with distinct pathologies. Despite the attractiveness of probiotic therapy as a tool to beneficially alter the intestinal microbiota, its immunological effects are still incompletely understood. The aim of the present study was to assess the efficacy of the probiotic formulation VSL#3 consisting of eight distinct bacterial species (including Streptococcus thermophilus, Bifidobacterium breve, B. longum, B. infantis, Lactobacillus acidophilus, L. plantarum, L. paracasei, and L. delbrueckii subsp. Bulgaricus) in reversing immunological effects of microbiota depletion as compared to reassociation with a complex murine microbiota. To address this, conventional mice were subjected to broad-spectrum antibiotic therapy for 8 weeks and perorally reassociated with either VSL#3 bacteria or a complex murine microbiota. VSL#3 recolonization resulted in restored CD4+ and CD8+ cell numbers in the small and large intestinal lamina propria as well as in B220+ cell numbers in the former, whereas probiotic intervention was not sufficient to reverse the antibiotic induced changes of respective cell populations in the spleen. However, VSL#3 application was as efficient as complex microbiota reassociation to attenuate the frequencies of regulatory T cells, activated dendritic cells and memory/effector T cells in the small intestine, colon, mesenteric lymph nodes, and spleen. Whereas broad-spectrum antibiotic treatment resulted in decreased production of cytokines such as IFN-γ, IL-17, IL-22, and IL-10 by CD4+ cells in respective immunological compartments, VSL#3 recolonization was sufficient to completely recover the expression of the anti-inflammatory cytokine IL-10 without affecting pro-inflammatory mediators. In summary, the probiotic compound VSL#3 has an extensive impact on mucosal, peripheral, and systemic innate as well as adaptive immunity, exerting beneficial anti-inflammatory effects in intestinal as well as systemic compartments. Hence, VSL#3 might be considered a therapeutic immunomodulatory tool following antibiotic therapy

    Proliferative activity of antigen-specific CD154+ T cells against bacterial and fungal respiratory pathogens in cystic fibrosis decreases after initiation of highly effective CFTR modulator therapy

    Get PDF
    Background: Together with impaired mucociliary clearance, lung disease in cystic fibrosis (CF) is driven by dysregulation of innate and adaptive immunity caused by dysfunctional CFTR (Cystic Fibrosis Transmembrane Conductance Regulator), leading to airway infection and hyperinflamma-tion. The highly effective CFTR modulator therapy (HEMT) elexacaftor/tezacaftor/ivacaftor (ETI) generates substantial improvements in clinical outcomes of people with CF (pwCF) by restoration of CFTR activity. Aberrant immune responses of lymphocytes due to CFTR dysfunction has been described in the past, but not the effects of CFTR restoration by HEMT on these cells. We aimed to examine the effect of ETI on the proliferative activity of antigen-specific CD154 (+) T cells against bacterial and fungal species relevant in CF and on total IgG and IgE as markers of B cell adaptive immunity.Methods: We performed ex vivo analyses of Ki-67 expression in antigen-specific CD154 (+) T cells against Pseudomonas aeruginosa, Staphylococcus aureus, Aspergillus fumigatus, Scedosporium apiospermum and Candida albicans from 21 pwCF by cytometric assay based on antigen-reactive T cell enrichment (ARTE), and analysis of total serum IgE and IgG before and after initiation of ETI.Results: Mean Ki-67 expression in antigen-specific CD154 (+) T cells against P. aeruginosa, A. fumigatus, S. apiospermum and C. albicans, but not S. aureus, mean total serum IgG and mean total serum IgE decreased significantly after initiation of ETI. No correlation was found to change in sputum microbiology of the examined pathogens. Mean BMI and FEV1 increased significantly.Conclusion: HEMT is associated with decreased antigen-specific CD154 (+) T cell proliferation activity in our cohort, independent of findings in sputum microbiology of the examined pathogens. Together with the observed clinical improvement and the decrease in total IgE and IgG, this indicates effects due to CFTR restoration on CD154 (+) T cells by ETI and a reduction of B cell activation with subsequent lower immunoglobulin synthesis under HEMT therapy. These results endorse earlier evidence of CFTR dysfunction in T and B cells leading directly to aberrant immune responses with hyperinflammation

    Adoptive Cell Transfer of Allogeneic Epstein-Barr Virus-Specific T Lymphocytes for Treatment of Refractory EBV-Associated Posttransplant Smooth Muscle Tumors: A Case Report

    Get PDF
    Posttransplant smooth muscle tumors (PTSMTs) are rare Epstein-Barr virus (EBV)-associated neoplasms, mostly occurring after solid organ transplantation. Current therapeutic strategies include surgery and reduction of immunosuppressive medication. We describe for the first time a novel treatment approach for PTSMT by adoptive cell transfer (ACT) of EBV-specific T cells to a 20-year-old patient with a medical history of cardiac transplantation, posttransplant lymphoproliferative disease, and multilocular PTSMT. During ACT, mild cytokine release syndrome occurred, while no unexpected safety signals were recorded. We observed in vivo expansion of EBV-specific T cells and reduction of EBV viremia. Best response was stable disease after 4 months with reduction of EBV viremia and normalization of lactate dehydrogenase levels. ACT with EBV-specific T cells may be a safe and efficacious therapeutic option for PTSMT that warrants further exploration

    Clinical Post-SARS-CoV-2 Infection Scenarios in Vaccinated and Non-Vaccinated Cancer Patients in Three German Cancer Centers: A Retrospective Analysis.

    Get PDF
    COVID-19 vaccines have become an integral element in the protection of cancer patients against SARS-CoV-2. To date, there are no direct comparisons of the course of COVID-19 infection in cancer patients between the pre- and post-vaccine era. We analyzed SARS-CoV-2 infections and their impact on cancer in COVID-19 vaccinated and non-vaccinated patients from three German cancer centers. Overall, 133 patients with SARS-CoV-2 were enrolled in pre- and post-vaccine eras: 84 non-vaccinated and 49 vaccinated, respectively. A mild course of COVID-19 was documented more frequently in vaccinated patients (49% vs. 29%), while the frequency of severe and critical courses occurred in approximately one-half of the non-vaccinated patients (22% vs. 42%, p = 0.023). Particularly, patients with hematologic neoplasms benefited from vaccination in this context (p = 0.031). Admissions to intermediate- and intensive-care units and the necessity of non-invasive and invasive respiratory support were reduced by 71% and 50% among vaccinated patients, respectively. The median length of admission was 11 days for non-vaccinated and 5 days for vaccinated patients (p = 0.002). COVID-19 mortality was reduced by 83% in vaccinated patients (p = 0.046). Finally, the median time from SARS-CoV-2 infection to restarting cancer therapy was 12 and 26 days among vaccinated and non-vaccinated groups, respectively (p = 0.002). Although this study does not have enough power to perform multivariate analyses to account for confounders, it provides data on COVID-19 in non-vaccinated and vaccinated cancer patients and illustrates the potential benefits of COVID-19 vaccines for these patients

    Primary and secondary anti-viral response captured by the dynamics and phenotype of individual T cell clones

    Full text link
    The diverse repertoire of T-cell receptors (TCR) plays a key role in the adaptive immune response to infections. Previous studies show that secondary responses to the yellow fever vaccine - the model for acute infection in humans - are weaker than primary ones, but only quantitative measurements can describe the concentration changes and lineage fates for distinct T-cell clones in vivo over time. Using TCR alpha and beta repertoire sequencing for T-cell subsets, as well as single-cell RNAseq and TCRseq, we track the concentrations and phenotypes of individual T-cell clones in response to primary and secondary yellow fever immunization showing their large diversity. We confirm the secondary response is an order of magnitude weaker, albeit 10\sim10 days faster than the primary one. Estimating the fraction of the T-cell response directed against the single immunodominant epitope, we identify the sequence features of TCRs that define the high precursor frequency of the two major TCR motifs specific for this particular epitope. We also show the consistency of clonal expansion dynamics between bulk alpha and beta repertoires, using a new methodology to reconstruct alpha-beta pairings from clonal trajectories
    corecore